
A Wave Port Driver for Real-Time Audio Streaming - 42

[image: image1.png]4% Windows

A Wave Port Driver for Real-Time Audio Streaming

Windows Vista Version - January 10, 2006

Abstract

This paper provides information about the WaveRT (wave real-time) port driver for the Microsoft® Windows® family of operating systems. It provides guidelines for audio hardware vendors to develop WaveRT miniport drivers for their audio devices.

This information applies for the following operating system:

Microsoft Windows Vista™
Future versions of this preview information will be provided in the Windows Vista Driver Kit. If you encounter a conflict between this paper and the Windows Vista Driver Kit, consider the Windows Vista Driver Kit to be factually correct and this paper to be out of date.

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/device/audio/wavertport.mspx
Contents

3Introduction

3Comparison with WaveCyclic and WavePci

5Stream Latency During Playback

7Stream Latency During Recording

9Opening a Real-Time Audio Stream

10Design Guidelines

11Hardware Latency and Buffer Attributes

11FIFO Interrupts

11Scatter-Gather DMA and Buffer Looping

11Position Registers

12Clock Register

12Register Access

13Audio Processing Objects

14WaveRT Reference

15WaveRT Port and Miniport Driver Interfaces

32KSPROPSETID_RTAudio Property Set

37Structures

42References

Disclaimer: This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2003-2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Introduction

This paper provides information about the WaveRT (wave real-time) port driver for the Microsoft® Windows® family of operating systems. This driver provides support for an audio device that has the following capabilities:

· Connects to a system bus (for example, PCI).

· Can play back or record wave data (audio data that is described by a WAVEFORMATEX or WAVEFORMATEXTENSIBLE structure; for information about these structures, see the WDK documentation).

In the next version of the Windows operating system, Windows Vista™, the PortCls system driver provides a WaveRT port driver that achieves real-time performance but uses a simple cyclic buffer for rendering or capturing an audio stream. Like the WaveCyclic and WavePci port drivers in Windows Server™ 2003, Windows XP, and earlier, the WaveRT port driver provides the generic system functionality for a kernel-streaming (KS) filter that represents an audio device. The hardware vendor supplies a WaveRT miniport driver to perform the hardware-specific tasks for the filter. For information about PortCls, WaveCyclic, and WavePci, see the Windows Driver Kit (WDK) documentation.

In Windows Vista and later, the WaveRT port driver is the preferred wave port driver to use with new miniport drivers, although PortCls continues to support WaveCyclic and WavePci miniport drivers. In Windows Server 2003, Windows XP and earlier, WaveCyclic and WavePci are the only available wave port drivers.

The WaveRT port driver supports audio applications that reduce the latency of audio streams by using the real-time scheduling support that is available in Windows Vista and later. Hardware innovations, such as the low-latency isochronous transfer modes of PCI Express devices, complement real-time scheduling.

To take advantage of these improvements, an audio device should be able to play or capture audio data with little or no intervention by the driver software. If designed properly, the audio hardware should require no help from the driver from the time that the audio stream enters the run state until it exits that state. The result is low-latency audio that consumes few host-CPU cycles and is free of timing glitches.

The client for the WaveRT port driver is typically the global audio engine. The engine is the operating-system component that mixes the playback streams from the currently running audio applications and writes the mixed stream into the cyclic buffer. The audio device pulls the stream from the buffer and plays it.

Comparison with WaveCyclic and WavePci

In Windows Server 2003, Windows XP, and earlier, the only available wave port drivers are WaveCyclic and WavePci. Audio devices with WaveCyclic and WavePci port drivers require constant attention from the driver to service an audio stream after it enters the run state:

· The WaveCyclic port driver requires that a driver thread (a deferred procedure call (DPC)) execute at regularly scheduled intervals to perform data copying.

· The WavePci port driver requires the miniport driver to continually acquire and release mappings.

In Windows XP and earlier, most audio devices use WaveCyclic miniport drivers, which are easier to implement correctly than WavePci drivers. However, by requiring data copying, WaveCyclic drivers are sub-optimal for real-time, low-latency audio applications.

For example, during playback, a WaveCyclic driver thread must copy the client's output data to the cyclic buffer so that the audio device can play it. The thread schedules itself to run in a timing window that is wide enough to contain the CPU cycles that are needed to copy the data. The window must be even wider to absorb unforeseen delays and accommodate timing tolerances in the software-scheduling mechanism. By requiring data copying, the WaveCyclic driver increases the stream latency by the width of the window.

The WavePci port driver provides better performance than WaveCyclic, but it requires miniport drivers to perform complex operations:

· A WavePci miniport driver cannot hold its own spin lock when it calls into the port driver to obtain or release mappings. During a call into the port driver, the miniport driver must not assume that it has exclusive access to any shared data structures that rely on the spin lock to serialize accesses.

· A WavePci miniport driver must be able to revoke mappings at any time during stream playing. Cancellation of an I/O request packet (IRP) carrying audio data causes the port driver to revoke the unprocessed mappings in the IRP.

Failure to perform these operations correctly leads to synchronization errors and other timing problems. In addition, the WavePci miniport driver must continually obtain and release mappings during the time that the stream is running. Though not as onerous as the data-copying overhead of the WaveCyclic port driver, the software overhead of handling mappings is still a significant drag on performance.

The WaveRT port driver combines the simplicity of the WaveCyclic port driver with the performance of the WavePci port driver. It eliminates the handling of mappings and the need for the driver to manipulate the audio data in the stream.

Some audio devices have direct memory access (DMA) controllers with idiosyncrasies that limit the kinds of data transfers that they can perform. A DMA engine might typically have any of the following limitations:

· Unorthodox buffer alignment requirements.

· A 32-bit address range in a 64-bit system.

· An inability to handle a contiguous buffer of arbitrary length.

· An inability to handle a sample split between two memory pages.

These limitations place constraints on the size, location, and alignment of hardware buffers. To accommodate the needs of various DMA engines, both the WaveRT and WaveCyclic port drivers give the miniport driver the ability to allocate its own cyclic buffer. However, the WaveRT port driver avoids the performance problems of the WaveCyclic port driver by providing the client with direct access to the buffer, which eliminates the need for data copying.

To play or record audio, clients of WaveCyclic and WavePci drivers must submit IOCTL_KS_READ_STREAM and IOCTL_KS_WRITE_STREAM requests. By using the data-transport facilities in kernel streaming (KS), WaveCyclic and WavePci port drivers experience the following sources of degraded performance:

· Transitions between user mode and kernel mode for each I/O request.

· Blocking while waiting for completion of an I/O request.

· The CPU cycles necessary to copy the data.

However, the WaveRT port driver does not use the data-transport facilities in KS. Instead, all that a client of the WaveRT port driver must do is set the pin to the run state and begin moving audio data directly to or from the cyclic buffer.

When some WaveCyclic miniport drivers copy data to or from the cyclic buffer, they also modify the data, which is one way for the driver to work around a design flaw in the audio hardware. For example, Windows assumes that 8-bit pulse coded modulation (PCM) samples are unsigned. If the audio hardware treats 8-bit samples as signed, the driver can intervene by performing the unsigned-to-signed conversion at the same time that it copies the data.

Such workarounds are more awkward to implement in a WaveRT miniport driver. By increasing the stream latency, they largely defeat the purpose of the WaveRT port driver. Thus, drivers containing such workarounds should not advertise themselves to clients as able to perform real-time audio. The general rule is that a WaveRT miniport driver should never touch the data in the cyclic buffer. Instead, the data should flow directly between the client and the audio hardware without driver intervention, and hardware designers should ensure that such intervention is unnecessary. Flawed hardware that requires the miniport driver to manipulate stream data should use the WaveCyclic port driver instead of the WaveRT port driver.

Drivers for wave-rendering devices register themselves under the categories KSCATEGORY_AUDIO and KSCATEGORY_RENDER. Similarly, drivers for wave-capture devices register themselves under KSCATEGORY_AUDIO and KSCATEGORY_CAPTURE. In addition, a WaveRT driver also registers itself under KSCATEGORY_REALTIME to distinguish itself from WaveCyclic and WavePci drivers, which do not belong to this category. For information about installing device interfaces for an audio adapter, see the WDK documentation.

Stream Latency During Playback

Typically, the role of the WaveRT port driver is minimal while an audio playback stream remains in the run state. As shown in the following figure, the client writes audio data to the cyclic buffer, and the audio device reads the data from the buffer and plays it. This activity requires no driver intervention. The audio device is a hardware component, and the client is a software component (typically, the global audio engine).

[image: image2.emf]Global Audio

Engine

Play

Position

FIFO DAC

Position

Register

Speaker

Write

Position

A B

Cyclic

Buffer

Start of

Buffer

End of

Buffer

Client

Write to

Buffer

Read from

Buffer

Audio Device

Figure 1. Latency of a Playback Stream

In Figure 1, the write position is the location just past the last sample that the client wrote to the buffer. The play position is the sample that the audio device is currently playing. The write and play positions continually progress from left to right as the stream flows through the buffer. When the write or play position reaches the end of the buffer, it wraps around to the start of the buffer.

The latency from the time that the client writes an audio sample to the buffer until the audio device plays it is simply the separation between the write position and play position. This separation is the sum of the following two sources of latency (marked as A and B in Figure 1):

· Latency A: After the audio device reads data from the buffer, the data resides in a hardware first in, first out (FIFO) buffer until the audio device clocks the data through the digital-to-analog converter (DAC).

· Latency B: After the client writes data to the cyclic buffer, the data resides in the buffer until the audio device reads the data.

The client has no control over latency A, which depends entirely on the hardware. A typical FIFO might store enough samples to feed the DAC for roughly 64 ticks of the sample clock. However, the client does control latency B. Making latency B too large introduces unnecessary delays into the system; however, making it too small risks starving the audio device. By scheduling a real-time thread to update the buffer, the client can make the latency smaller than would otherwise be practical.

With the real-time scheduling in Microsoft Windows Vista and later, the client thread can schedule itself to run at relatively precise time intervals. By eliminating uncertainty in the times at which the thread executes, the client can reduce the stream latency by removing unnecessary padding from the separation of the write position from the play position.

To determine how small the separation between the write and play positions can be without risking starvation, the client must consider all of the hardware delays that the data encounters from the time that the client writes the data to the cyclic buffer until the data is played. In addition to the delay through the audio device’s internal FIFO, other hardware delays might exist. For example, packet-based hardware interfaces such as PCI Express introduce transport delays from the time that the CPU initiates a write operation until the data appears in main memory. The client can obtain a summary of these delays by sending a KSPROPERTY_RTAUDIO_HWLATENCY property request to the driver.

After calculating how much separation to maintain between the write and play positions, the client monitors the play position at regular intervals to determine how far to advance the write position. At the start of each interval, the client writes enough data to the cyclic buffer to keep the hardware busy through the start of the next interval.

One way to obtain the play position is through the KSPROPERTY_AUDIO_POSITION property request, but each request requires a transition between user mode and kernel mode. In Windows codenamed “Longhorn” and later, PortCls supports the KSPROPERTY_RTAUDIO_POSITIONREGISTER property request, which provides a more efficient means for obtaining the play position. If the audio hardware contains a position register (shown in Figure 1) that points to the play position, the property request maps the register into a virtual memory address that is accessible to the user-mode client. Thereafter, the client simply reads the current value of the register from this address and no kernel-mode transition is required. For information about KSPROPERTY_AUDIO_POSITION, see the WDK documentation.

Stream Latency During Recording

Typically, the role of the WaveRT port driver is minimal while an audio recording stream remains in the run state. As shown in the following figure, the audio device captures audio data and writes it to the cyclic buffer, and then the client reads the data from the buffer. This activity requires no intervention by the driver. The audio device is a hardware component and the client is a software component (typically, the global audio engine).

[image: image3.emf]Global Audio

Engine

Read

Position

Record

Position

A B

Cyclic

Buffer

Start of

Buffer

Client

Write to

Buffer

Read from

Buffer

FIFO ADC

Position

Register

Microphone

Audio Device

End of

Buffer

Figure 2. Latency of a Recording Stream

Figure 2 identifies the record position as the buffer location of the sample that the audio device is currently recording (capturing from the microphone through the analog-to-digital converter, or ADC). Note that the record position is the future buffer location into which the audio device will write the sample after it passes through the FIFO. The read position is the next sample that the global audio engine will read from the buffer. The record and read positions continually progress from left to right as the stream flows through the buffer. When the record or read position reaches the end of the buffer, it wraps around to the start of the buffer.

The latency from the time that the audio device captures an audio sample in the ADC until the client reads it is simply the separation between the record position and read position. This separation is the sum of the following sources of latency (marked as A and B in Figure 2):

· Latency A: After capturing data from the ADC, the audio device stores the data in a hardware FIFO until it can write the data to the cyclic buffer.

· Latency B: After the audio device writes data to the cyclic buffer, the data resides in the buffer until the client reads the data.

The client has no control over latency A, which depends entirely on the hardware. A typical FIFO might store roughly 64 samples from the ADC. However, the client does control latency B. Making latency B too large introduces unnecessary delays into the system, but making it too small risks reading data too early, before the audio device has written it into the buffer. By scheduling a real-time thread to read the buffer, the client can make the latency smaller than would otherwise be practical.

With the real-time scheduling in Windows Vista and later, the client thread can schedule itself to run at relatively precise time intervals. By eliminating uncertainty in the times at which the thread executes, the client can reduce the stream latency by removing unnecessary padding from the separation of the read position from the record position.

To determine how small the separation between the read and record positions can be made without causing glitches, the client must consider all of the hardware delays that the data encounters from the time that the audio device captures the data until the client reads the data from the cyclic buffer. In addition to the delay through the audio device’s internal FIFO, other hardware delays might exist. The client can obtain a summary of the delays by sending a KSPROPERTY_RTAUDIO_HWLATENCY property request to the driver.

After calculating how much separation to maintain between the record and read positions, the client monitors the record position at regular intervals to determine how much the read position should lag. During each interval, the client reads only the data that the audio device is certain to have already written to the buffer.

As described previously, the client can obtain the current record position through either a KSPROPERTY_AUDIO_POSITION or KSPROPERTY_RTAUDIO_POSITIONREGISTER property request. The latter is more efficient because it allows the client to read the record position directly, without incurring the cost of a kernel-mode transition. For information about KSPROPERTY_AUDIO_POSITION, see the WDK documentation.

Opening a Real-Time Audio Stream

During installation, the adapter driver for a real-time audio device registers its WaveRT miniport driver as a device interface under the categories KSCATEGORY_AUDIO and KSCATEGORY_REALTIME, as described previously. In addition, the driver registers a rendering or capture device under KSCATEGORY_RENDER or KSCATEGORY_CAPTURE, respectively.

A client, such as the global audio engine, enumerates the KS filters that represent audio devices, selects the real-time audio device, and instantiates it. The resulting filter object has the following components:

· An instance of the WaveRT miniport driver to handle all hardware-dependent functions for the filter.

· An instance of the WaveRT port driver to manage the generic system functions for the filter.

For more information about this process, see the WDK documentation.

If the KS filter performs audio rendering, the global audio engine or other client opens a playback stream as follows:

1. The audio engine opens a pin on the KS filter, and the WaveRT miniport driver creates the pin instance. While opening the pin, the audio engine passes the stream's wave format to the driver. The driver uses this information to select the proper buffer size in the next step.

2. The audio engine requests a cyclic buffer of a particular size from the WaveRT miniport driver, and the driver allocates the buffer (with the KSPROPERTY_RTAUDIO_BUFFER property). If the hardware cannot stream from a buffer of the requested size, the driver allocates a buffer that comes as close as possible to this size while satisfying the hardware constraints and system resource limitations. The driver maps the buffer into the hardware's DMA engine and also makes the buffer accessible to the audio engine in user mode.

3. The audio engine schedules a real-time thread to periodically write audio data to the cyclic buffer.

4. If the audio hardware does not provide direct support for looped buffers, the miniport driver must periodically reprogram the audio hardware.

The resulting configuration supplies glitch-free audio on audio hardware that either supports looped buffers or uses a real-time thread to regularly update the hardware.

The procedure for opening an audio stream for recording is similar. The miniport driver might have to allocate a buffer that is bigger or smaller than the requested size, depending on the hardware restrictions and available system resources. As a rule, the client, which is a software component and is thus much more flexible than the hardware, should accept whatever buffer size the driver allocates. To ensure that the buffer is accessible to the audio hardware, the miniport driver uses the WaveRT port driver’s memory-management methods to allocate the buffer. The port driver then maps the allocated buffer into a contiguous block of virtual memory that the user-mode client can access.

The miniport driver maps the entire allocated buffer into the DMA hardware queue and performs any workarounds that are needed to make the hardware cycle through the buffer (see step 4 in the preceding list). For example, the Intel ICH chipset does not support buffer looping in hardware. Thus, the driver must update a single hardware register periodically, which can be done in either an interrupt service routine (ISR) or a real-time thread. The consumption of processing resources by this operation is modest. For example, on the ICH, the register update should occur about once every 0.5 second on a 48-kHz, stereo, 16-bit stream.

Design Guidelines

This section presents guidelines for writing WaveRT miniport drivers and designing audio hardware that is WaveRT-compatible.

In addition, Microsoft is developing a set of hardware guidelines for a Universal Audio Architecture (UAA) that incorporates the recommended features of a WaveRT device. The UAA guidelines are based closely on Intel’s High Definition (HD) Audio specification. The WaveRT-friendly features of a UAA-compliant HD Audio device include scatter-gather DMA transfers, at least 32 bits of addressing, and wall clock and position registers that can be mapped to user-mode memory. For a UAA-compliant device, a vendor-supplied custom audio driver is optional unless a custom driver is needed to support a vendor’s proprietary non-UAA hardware features, the device can rely entirely on the operating system for driver support. For more information, see the Universal Audio Architecture white paper at http://www.microsoft.com/whdc/device/audio/uaa.mspx.

Hardware Latency

A WaveRT miniport driver must provide a fully functioning implementation of the IMiniportWaveRTStream::GetHardwareLatency methods. This method is necessary to support the KSPROPERTY_RTAUDIO_HWLATENCY property.

FIFO Interrupts

A WaveRT miniport driver must be able to automatically generate interrupts when FIFO overruns and underruns occur. This feature is helpful in detecting glitches in the audio stream during testing of the audio device and driver software. Without hardware support, no convenient and reliable method exists for obtaining this information.

Scatter-Gather DMA and Buffer Looping

For new designs, hardware implementers should design their audio devices' DMA channels to support the following features:

· Scatter-gather transfers

A DMA controller with scatter-gather capability requires no driver intervention to move audio data to or from an audio buffer that consists of a series of physical memory pages that are not contiguous in physical memory.

· Automatic buffer looping

After reaching the end of a cyclic buffer that contains audio data, a DMA controller with buffer-looping capability requires no driver intervention to begin accessing the data at the beginning of the cyclic buffer.

Note that the WaveRT port driver supports existing hardware designs that lack the ability to perform scatter-gather transfers or automatic buffer looping.

If an audio device lacks scatter-gather capability, the WaveRT miniport driver must allocate cyclic buffers that consist of pages that are physically contiguous in memory. The drawback is that as a system’s pool of nonpaged memory becomes increasingly fragmented, a request to allocate a large block of contiguous physical memory is more likely to fail. A device with scatter-gather capability is not affected by memory fragmentation.

If an audio device lacks automatic buffer looping, the WaveRT miniport driver must intervene when the DMA channel reaches the end of the cyclic buffer by configuring the channel to begin transferring data at the beginning of the buffer.

Position Registers

For new designs, hardware implementers should include a position register for each DMA channel. A position register indicates the current buffer position as a byte offset from the beginning of the cyclic buffer. The position register reading is zero at the beginning of the buffer. When the position register reaches the end of the cyclic buffer, it automatically wraps around to the beginning of the buffer (resets to zero) and continues to increment as the buffer position advances.

Position registers can be mapped to virtual memory so that clients can read the registers directly.

Ideally, position registers should indicate the buffer position of the samples that are currently moving through the audio device's digital-to-analog and analog-to-digital converters (DACs and ADCs).

However, this information might not be directly available from an audio chip set that divides the digital and analog functions into separate bus-controller and codec chips. Typically, the position registers are located in the bus-controller chip, and each register indicates the position of the audio data that the controller is writing to or reading from the codecs. After obtaining a reading from this type of position register, the client can estimate the current position of the samples that are moving through the DACs or ADCs by adding or subtracting the delay through the codec. The client obtains the codec delay from the KSPROPERTY_RTAUDIO_HWLATENCY property request. For this reason, a WaveRT miniport driver must accurately report the codec delay when the port driver calls the IMiniportWaveRTStream::GetHardwareLatency method in response to this type of property request.

Note that the WaveRT port driver supports existing hardware designs that lack position registers. For a device with this limitation, the WaveRT miniport driver must fail calls to the IMiniportWaveRTStream::GetPositionRegister method, which forces the port driver to fail KSPROPERTY_RTAUDIO_POSITIONREGISTER property requests. In this case, clients must obtain the current position through the KSPROPERTY_AUDIO_GETPOSITION property, which incurs the overhead of a transition between user mode and kernel mode for each position reading. For information about KSPROPERTY_AUDIO_GETPOSITION, see the WDK documentation.

Clock Register

A clock register is an optional but useful hardware feature for a WaveRT-compatible audio device. Audio application programs can use clock registers to synchronize audio streams in two or more independent audio devices that have separate and unsynchronized hardware clocks. Without clock registers, an application is unable to detect and compensate for the drift between the hardware clocks.

The sample clock that the audio hardware uses to clock audio data through the digital-to-analog or analog-to-digital converters should be derived from the internal clock that increments the clock register. A clock register that increments at a rate that is asynchronous with respect to the sample clock is of no use for synchronization and should not be exposed.

Similar to the position registers, the clock register can be mapped to virtual memory so that clients can read the register directly.

Register Access

User-mode software must never be allowed to directly alter the state of any hardware register, and it must not be able to read any registers other than the clock register and position registers.

To meet these requirements, hardware designers should mirror the clock register and position registers into a separate memory page (or pages) that can be mapped to the client's virtual address space. This page should mirror none of the audio device’s other hardware registers. Additionally, the hardware should restrict access of the clock and position registers on the mirrored page to read-only.

Audio Processing Objects

A WaveRT miniport driver should never need to touch the audio data in an audio device's cyclic buffer. As discussed in the section “Comparison with WaveCyclic and WavePci,” the hardware should be designed so that audio data flows directly between the client and audio hardware with no intervention by the audio driver software. However, Windows Vista provides two types of audio processing objects (APOs) to perform software processing of audio data without violating this rule:

· Local effects (LFX) APOs

LFX APOs perform generic audio processing functions (for example, equalization) that are not specific to a particular audio device. An LFX APO processes an audio stream from an application before the stream is added to the global mix.

· Global effects (GFX) APOs

GFX APOs perform hardware-specific processing of an audio stream. A GFX APO is tied to a particular audio device by the INF file that installs the device. The effect of a GFX APO is global because it affects the global mix that plays through the audio device.

Global mixing is performed by the global audio engine, which is the user-mode system component that is responsible for mixing the audio streams from all audio applications. Typically, the global audio engine is the client that directly exchanges data with the WaveRT audio device through the cyclic buffer.

When the user enables an LFX APO, the system inserts the APO into one of the input streams to the global audio engine. When the user enables a GFX APO, the system inserts that APO into the output stream from the global audio engine. The following figure shows the positions of the LFX APOs and GFX APO relative to the global audio engine.

[image: image4.wmf]Global Audio Engine

LFX

APO

LFX

APO

LFX

APO

GFX

APO

Audio

Device

Data Streams from Audio Applications

...

Application Processes

Global Audio Engine Process

Software

Hardware

Local Effects

Global Effects

Global Mixing

Figure 3. Audio Processing Objects

An enabled LFX APO executes in the application process that generates the input stream to the global audio engine. An enabled GFX APO executes in the global audio engine’s process.

The global audio engine executes the GFX APO synchronously with global mixing. After performing the global mixing of a block of data for the output stream, the same global audio engine thread runs the GFX APO on the just-mixed data block. This scheme eliminates all of the scheduling uncertainties that would result from scheduling the global mixing and GFX APO as separate threads. Thus, the contribution of a GFX APO to audio stream latency reduces to its execution time.

WaveRT Reference

This reference section describes the interfaces, properties, and structures that are used by the WaveRT port driver and WaveRT miniport driver. The definitions in this section are preliminary and might change before the release of Microsoft Windows Vista. If you have suggestions for improving the definitions of these interfaces and properties, please e-mail your comments to uaa@microsoft.com.

For general information about audio drivers, including port and miniport drivers, KS filters and pins, and KS properties, see the WDK documentation.

This section includes the following reference topics:

WaveRT Port and Miniport Driver Interfaces
KSPROPSETID_RtAudio Property Set
Structures
WaveRT Port and Miniport Driver Interfaces

The WaveRT port driver and miniport driver communicate with each other through four primary device driver interfaces, which will only be supported in Windows Vista and later.

The WaveRT port driver presents the following interfaces to the miniport driver:

IPortWaveRT

The main interface that the WaveRT port driver exposes to a miniport driver.

IPortWaveRTStream

A stream-specific interface that provides helper functions that the WaveRT miniport driver calls to perform allocation and mapping of cyclic buffers.

The WaveRT miniport driver presents the following interfaces to the port driver:

IMiniportWaveRT
The main interface that the WaveRT miniport driver exposes to the port driver.

IMiniportWaveRTStream

The interface that represents the wave stream that flows through a pin on a WaveRT filter.

For general information about the PortCls system driver, audio adapter drivers, and port and miniport drivers, see the WDK documentation.

IPortWaveRT

The IPortWaveRT interface is the main interface that the WaveRT port driver exposes to the adapter driver that implements the WaveRT miniport driver object. An adapter driver creates an IPortWaveRT object by calling PcNewPort and specifying REFIID IID_IPortWaveRT. IPortWaveRT inherits from the IPort interface. For information about PcNewPort and IPort, see the WDK documentation. GUID constant IID_IPortWaveRT is defined in header file portcls.h.

An adapter driver forms a port-miniport driver pair by binding an IPortWaveRT object to an IMiniportWaveRT object. The PortCls system driver registers the pair with the system as a real-time wave filter.

IPortWaveRT inherits the methods in the IPort interface; it provides no additional methods.

IPortWaveRT is not supported in operating systems earlier than Windows Vista.

IPortWaveRTStream

The IPortWaveRTStream interface is a stream-specific interface that provides helper methods for use by the WaveRT miniport driver. The miniport driver calls the methods to perform allocation and mapping of cyclic buffers for audio data. The WaveRT port driver implements this interface. The port driver gives an IPortWaveRTStream object reference to each miniport driver stream object that it creates. IPortWaveRTStream inherits from the IUnknown interface.

An audio stream is associated with each pin instance on a WaveRT filter. The adapter driver forms the filter by binding the WaveRT port and miniport drivers. When the port driver calls the IMiniportWaveRT::NewStream method to create the miniport driver stream object, the port driver passes an IPortWaveRTStream reference as one of the method's call parameters.

To allocate the memory needed for the cyclic buffer, the miniport driver must call the IPortWaveRTStream interface’s AllocatePagesForMdl or AllocateContiguousPagesForMdl method. The interface provides additional methods for mapping the allocated pages, unmapping them, and freeing them.

The methods in the IPortWaveRTStream interface are based on, and are similar to, the MmXxx kernel functions that perform allocation and mapping of memory descriptor lists (MDLs). However, the MmXxx functions cannot be used in place of the IPortWaveRTStream methods. For information about MDLs and the MmXxx functions, see the WDK documentation.

IPortWaveRTStream is not supported in operating systems earlier than Windows Vista.

In addition to the methods that IPortWaveRTStream inherits from the IUnknown interface, IPortWaveRTStream supports the following methods:

IPortWaveRTStream::AllocateContiguousPagesForMdl

IPortWaveRTStream::AllocatePagesForMdl
IPortWaveRTStream::MapAllocatedPages

IPortWaveRTStream::UnmapAllocatedPages

IPortWaveRTStream::FreePagesFromMdl

IPortWaveRTStream::GetPhysicalPagesCount

IPortWaveRTStream::GetPhysicalPageAddress

IPortWaveRTStream::AllocateContiguousPagesForMdl

The AllocateContiguousPagesForMdl method allocates a list of contiguous, nonpaged, physical memory pages and returns a pointer to a memory descriptor list (MDL) that describes them.

PMDL
 AllocateContiguousPagesForMdl(
 IN PHYSICAL_ADDRESS LowAddress,
 IN PHYSICAL_ADDRESS HighAddress,
 IN SIZE_T TotalBytes
);
Parameters

LowAddress

Specifies the low end of the address range from which the storage for the MDL can be allocated.

HighAddress

Specifies the high end of the address range from which the storage for the MDL can be allocated.

TotalBytes

Specifies the total number of bytes to allocate for the MDL. This method always allocates an integral number of memory pages.

Return Value

AllocateContiguousPagesForMdl returns a pointer to an MDL that describes a list of physical memory pages. If the method is unable to allocate the requested buffer, it returns NULL.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The driver calls this method to allocate a block of physically contiguous memory pages. All of the physical memory pages in the MDL fall within the specified address range. If sufficient memory is available, the memory allocation will be the requested size rounded up to the next page; otherwise, the call fails.

After a system has been running for some time, the system’s pool of nonpaged memory tends to become fragmented, which increases the probability that a request to allocate a large block of contiguous physical memory will fail. If the audio device's DMA controller does not require the physical memory pages to be contiguous, the driver should call IPortWaveRTStream::AllocatePagesForMdl instead. Unlike AllocateContiguousPagesForMdl, the AllocatePagesForMdl method is not affected by memory fragmentation.

The AllocateContiguousPagesforMdl method allocates memory pages that are locked (nonpaged) but unmapped. If the miniport driver requires software access to this memory, the miniport driver must make a subsequent call to IPortWaveRTStream::MapAllocatedPages to map the pages into kernel-mode address space.

Callers of the AllocateContiguousPagesForMdl method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocatePagesForMdl, IPortWaveRTStream::MapAllocatedPages
IPortWaveRTStream::AllocatePagesForMdl

The AllocatePagesforMdl method allocates a list of nonpaged physical memory pages and returns a pointer to a memory descriptor list (MDL) that describes them.

PMDL
 AllocatePagesForMdl(
 IN PHYSICAL_ADDRESS HighAddress,
 IN SIZE_T TotalBytes
);
Parameters

HighAddress

Specifies the high end of the address range from which the storage for the MDL can be allocated. The low end of the address range is implicitly zero.

TotalBytes

Specifies the total number of bytes to allocate for the MDL. This method always allocates an integral number of memory pages.

Return Value

AllocatePagesforMdl returns a pointer to an MDL that describes a list of physical memory pages. If the method is unable to allocate the requested buffer, it returns NULL.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The driver calls this method to allocate memory that can be mapped to user or kernel mode. The physical memory pages in the MDL are not necessarily contiguous in physical memory, but they all fall within the specified address range.

The method always allocates an integral number of pages. If sufficient memory is available, the memory allocation will be the requested size rounded up to the next page. Otherwise, the memory allocation can be less than the requested size. The caller should check how many bytes are actually allocated.

If the audio device's DMA controller requires the physical memory pages in the buffer to be contiguous, the driver should call IPortWaveRTStream::AllocateContiguousPagesForMdl instead.

Like the MmAllocatePagesForMdl function, the AllocatePagesforMdl method allocates memory pages that are locked (nonpaged) but unmapped. If the miniport driver requires software access to this memory, the miniport driver must make a subsequent call to IPortWaveRTStream::MapAllocatedPages to map the pages into kernel-mode address space. For information about MmAllocatePagesForMdl, see the WDK documentation.

Callers of the AllocatePagesForMdl method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocateContiguousPagesForMdl, IPortWaveRTStream::MapAllocatedPages

IPortWaveRTStream::MapAllocatedPages

The MapAllocatedPages method maps a list of previously allocated physical pages into a contiguous block of virtual memory that is accessible from kernel mode.

PVOID
 MapAllocatedPages(
 IN PMDL MemoryDescriptorList,
 IN MEMORY_CACHING_TYPE CacheType
);
Parameters

MemoryDescriptorList

Pointer to the MDL that will be mapped. The MDL can be allocated by calling either IPortWaveRTStream::AllocatePagesForMdl or IPortWaveRTStream::AllocateContiguousPagesForMdl.

CacheType

Specifies the cache type. Set this parameter to one of the following MEMORY_CACHING_TYPE enumeration values: MmNonCached, MmCached, or MmWriteCombined. For information about MEMORY_CACHING_TYPE, see the WDK documentation.

Return Value

MapAllocatedPages returns the starting address of the mapped buffer in virtual memory. If the method is unable to map the buffer, it returns NULL.

Headers

Declared in portcls.h. Include portcls.h.

Comments

This method maps the physical memory pages in the MDL into kernel-mode virtual memory. Typically, the miniport driver calls this method if it requires software access to the scatter-gather list for an audio buffer. In this case, the storage for the scatter-gather list must have been allocated by the IPortWaveRTStream::AllocatePagesForMdl or IPortWaveRTStream::AllocateContiguousPagesForMdl method.

A WaveRT miniport driver should not require software access to the audio buffer itself.

MapAllocatedPages is similar in operation to the MmMapLockedPagesSpecifyCache function. For information about MmMapLockedPagesSpecifyCache, see the WDK documentation.

The miniport driver is responsible for unmapping the memory prior to freeing it. For more information, see IPortWaveRTStream::UnmapAllocatedPages.

Callers of the MapAllocatedPages method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocatePagesForMdl, IPortWaveRTStream::AllocateContiguousPagesForMdl, IPortWaveRTStream::UnmapAllocatedPages

IPortWaveRTStream::UnmapAllocatedPages

The UnmapAllocatedPages method releases a mapping.

VOID
 UnmapAllocatedPages(
 IN PVOID BaseAddress,
 IN PMDL MemoryDescriptorList
);
Parameters

BaseAddress

Pointer to the base virtual address to which the physical pages were mapped.

MemoryDescriptorList

Pointer to an MDL that describes the physical pages.

Return Value

None

Headers

Declared in portcls.h. Include portcls.h.

Comments

The miniport driver must call this method to release a mapping that was set up by a previous call to IPortWaveRTStream::MapAllocatedPages. The driver must release the mapping before calling IPortWaveRTStream::FreePagesFromMdl to free the MDL.

This method is similar in operation to the MmUnmapLockedPages function. For information about MmUnmapLockedPages, see the WDK documentation.

Callers of the UnmapAllocatedPages method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::MapAllocatedPages, IPortWaveRTStream::FreePagesFromMdl
IPortWaveRTStream::FreePagesFromMdl

The FreePagesFromMdl method frees an MDL.

VOID
 FreePagesFromMdl(
 IN PMDL MemoryDescriptorList
);
Parameters

MemoryDescriptorList

Pointer to the MDL.

Return Value

None

Headers

Declared in portcls.h. Include portcls.h.

Comments

The miniport driver must call this method to free an MDL that was previously allocated by calling either IPortWaveRTStream::AllocatePagesForMdl or IPortWaveRTStream::AllocateContiguousPagesForMdl.

FreePagesFromMdl frees both the physical memory pages described in the MDL and the MDL itself. On return, the MDL pointer value in the MemoryDescriptorList parameter is no longer valid.

Callers of the FreePagesFromMdl method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocatePagesForMdl, IPortWaveRTStream::AllocateContiguousPagesForMdl

IPortWaveRTStream::GetPhysicalPagesCount

The GetPhysicalPagesCount method returns the count of physical pages in an MDL.

ULONG
 GetPhysicalPagesCount(
 IN PMDL MemoryDescriptorList
);
Parameters

MemoryDescriptorList

Pointer to the MDL.

Return Value

GetPhysicalPagesCount method returns the count of physical pages in the MDL.
Headers

Declared in portcls.h. Include portcls.h.

Comments

The miniport driver uses this call to determine how many physical pages are contained within an MDL. The count is typically used in the process of programming the DMA hardware.
Callers of the GetPhysicalPagesCount method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocatePagesForMdl, IPortWaveRTStream::AllocateContiguousPagesForMdl, IPortWaveRTStream::GetPhysicalPageAddress
IPortWaveRTStream::GetPhysicalPageAddress
The GetPhysicalPageAddress method returns the physical address for a page within an MDL.

PHYSICAL_ADDRESS
 GetPhysicalPageAddress(
 IN PMDL MemoryDescriptorList
 IN ULONG Index
);
Parameters

MemoryDescriptorList

Pointer to the MDL.

Index

Index to the desired page within the MDL.

Return Value

None

Headers

Declared in portcls.h. Include portcls.h.

Comments

The miniport driver calls this method to determine the physical memory address for pages within an MDL that was previously allocated by calling either IPortWaveRTStream::AllocatePagesForMdl or IPortWaveRTStream::AllocateContiguousPagesForMdl.

The miniport typically calls this for each page in the MDL in order to program the physical address into the DMA. The Index argument is used to select the desired page, and can range from zero to the count returned by GetPhysicalPagesCount.
Callers of the GetPhysicalPageAddress method must be running at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRTStream::AllocatePagesForMdl, IPortWaveRTStream::AllocateContiguousPagesForMdl, IPortWaveRTStream::GetPhysicalPagesCount
IMiniportWaveRT

The IMiniportWaveRT interface is the primary interface that is exposed by the miniport driver for a WaveRT audio device. The adapter driver creates the WaveRT miniport driver object and passes the object's IMiniportWaveRT interface pointer to the WaveRT port driver's IPort::Init method. IMiniportWaveRT inherits from the IMiniport interface. For information about IPort::Init and IMiniport, see the WDK documentation.
An adapter driver forms a miniport-port driver pair by binding an IMiniportWaveRT object to an IPortWaveRT object. The PortCls system driver registers this pair with the system as a real-time wave filter.

IMiniportWaveRT is not supported in operating systems earlier than Windows Vista.

In addition to the methods that IMiniportWaveRT inherits from the IMiniport interface, IMiniportWaveRT supports the following methods:

IMiniportWaveRT::Init

IMiniportWaveRT::NewStream

IMiniportWaveRT::GetDeviceDescription

IMiniportWaveRT::Init

The Init method initializes the WaveRT miniport driver object.

NTSTATUS
 Init(
 IN PUNKNOWN UnknownAdapter,
 IN PRESOURCELIST ResourceList,
 IN PRTPORT Port
);
Parameters

UnknownAdapter

Pointer to the IUnknown interface of the adapter driver object whose miniport driver object is being initialized.

ResourceList

Pointer to the IResourceList interface of a resource-list object. This object specifies the list of hardware resources that the adapter driver has allocated to the miniport driver. After passing this reference to the miniport driver, the port driver might examine the contents of the resource list, but it will not modify the contents of the list. For information about IResourceList, see the WDK documentation.

Port

Pointer to the port driver's IPortWaveRT interface. The caller specifies a valid, non-NULL pointer value for this parameter.

Return Value

Init returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The ResourceList parameter is the same pointer value that the adapter driver passed earlier as a parameter to the IPortWaveRT object's Init method. For more information, see the description of IPort::Init in the WDK documentation.

The ResourceList and Port parameters follow the reference-counting conventions for COM objects.

The Init method is called at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRT

IMiniportWaveRT::NewStream

The NewStream method creates a new instance of a WaveRT stream object.

NTSTATUS
 NewStream(
 OUT PMINIPORTWAVERTSTREAM Stream,
 IN PRTPORTSTREAM PortStream,
 IN ULONG Pin,
 IN BOOL Capture,
 IN PKSDATAFORMAT DataFormat
);
Parameters

Stream

Output pointer for the new stream. This parameter points to a caller-allocated pointer variable into which the method writes a pointer to the new stream object's IMiniportWaveRTStream interface. The caller specifies a valid, non-NULL pointer for this parameter.

PortStream

Pointer to the IPortWaveRTStream interface of the port driver's stream object.

Pin

Specifies a pin ID that identifies the pin to open. If the WaveRT miniport driver's filter descriptor specifies a total of n pin factories on the filter, then valid values for parameter Pin are in the range 0 to n-1. For information about filter descriptors, see the WDK documentation.

Capture

Specifies whether to create a capture stream or a render stream. This parameter is TRUE for a capture (input) stream, and FALSE for a playback (output) stream.

DataFormat

Pointer to a KSDATAFORMAT structure that specifies the new stream's data format. For more information, see the following Comments section.

Return Value

NewStream returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The NewStream method sets the initial state of the stream to KSSTATE_STOP and its initial position to 0. For more information, see related methods IMiniportWaveRTStream::SetState and IMiniportWaveRTStream::GetPosition.

The DataFormat parameter, which specifies the data format of the stream, points to one of the following audio-specific, extended versions of the KSDATAFORMAT structure:

· KSDATAFORMAT_WAVEFORMATEX

· KSDATAFORMAT_DSOUND

For more information about audio data formats, see the WDK documentation.

The Stream and PortStream parameters follow the reference-counting conventions for COM objects.

The NewStream method is called at IRQL PASSIVE_LEVEL.

See Also

IMiniportWaveRTStream, IPortWaveRTStream, IMiniportWaveRTStream::SetState, IMiniportWaveRTStream::GetPosition
IMiniportWaveRT::GetDeviceDescription

The GetDeviceDescription method returns a pointer to a DEVICE_DESCRIPTION structure describing the device.

NTSTATUS
 GetDeviceDescription(
 OUT PDEVICE_DESCRIPTION DeviceDescription
);
Parameters

DeviceDescription

Pointer to a DEVICE_DESCRIPTION structure to be filled in by the miniport. The caller specifies a valid, non-NULL pointer value for this parameter.

Return Value

GetDeviceDescription returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The DeviceDescription parameter contains a pointer to a DEVICE_DESCRIPTION structure that the miniport fills in to describe the device. For more information about the DEVICE_DESCRIPTION structure, see the WDK documentation.
The GetDeviceDescription method is called at IRQL PASSIVE_LEVEL.

See Also

IPortWaveRT

IMiniportWaveRTStream

The IMiniportWaveRTStream interface represents the wave stream that flows through a pin on the KS filter that wraps a WaveRT rendering or capture device. The miniport driver implements the IMiniportWaveRTStream interface and exposes it to the port driver. The miniport driver creates a stream object with this interface when the port driver calls the IMiniportWaveRT::NewStream method. IMiniportWaveRTStream inherits from the IUnknown interface.

IMiniportWaveRTStream is not supported in operating systems earlier than Windows Vista.

In addition to the methods that IMiniportWaveRTStream inherits from the IUnknown interface, IMiniportWaveRTStream supports the following methods:

IMiniportWaveRTStream::AllocateAudioBuffer
IMiniportWaveRTStream::FreeAudioBuffer
IMiniportWaveRTStream::GetClockRegister

IMiniportWaveRTStream::GetHWLatency
IMiniportWaveRTStream::GetPosition
IMiniportWaveRTStream::GetPositionRegister

IMiniportWaveRTStream::SetFormat

IMiniportWaveRTStream::SetState

IMiniportWaveRTStream::AllocateAudioBuffer

The AllocateAudioBuffer method allocates a cyclic buffer for audio data.

NTSTATUS
 AllocateAudioBuffer(
 IN ULONG RequestedSize,
 OUT PMDL *AudioBufferMdl,
 OUT ULONG *ActualSize,
 OUT ULONG *OffsetFromFirstPage,
 OUT MEMORY_CACHING_TYPE *CacheType
);
Parameters

RequestedSize

Specifies the requested size, in bytes, of the audio buffer.

AudioBufferMdl

Output pointer for an MDL that describes the audio buffer. This parameter points to a caller-allocated pointer variable into which the method writes a pointer to the MDL. For information about MDLs, see the WDK documentation.

ActualSize

Output pointer for the actual size, in bytes, of the allocated buffer. This parameter points to a ULONG variable into which the method writes the size value.

OffsetFromFirstPage

Output pointer for the buffer’s offset, in bytes, from the start of the first page in the MDL. This parameter points to a caller-allocated ULONG variable into which the method writes the offset value.

CacheType

Specifies the type of caching that the client requests for the audio buffer. This parameter is a MEMORY_CACHING_TYPE enumeration value. For more information, see the Comments section below.

Return Values

AllocateAudioBuffer returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code. The following table shows some of the possible error status codes.

	Status Code
	Meaning

	STATUS_UNSUCCESSFUL
	The driver does not support the specified combination of buffer attributes.

	STATUS_INSUFFICIENT_RESOURCES
	Insufficient memory is available to allocate the buffer.

	STATUS_DEVICE_NOT_READY
	The device is not ready.

Headers

Declared in portcls.h. Include portcls.h.

Comments

After receiving a KSPROPERTY_RTAUDIO_BUFFER request from the client, the port driver calls the AllocateAudioBuffer method to allocate a cyclic buffer that the port driver can later map to the client’s virtual address space.

During the call to AllocateAudioBuffer, the miniport driver allocates the cyclic buffer by calling either IPortWaveRTPin::AllocatePagesForMdl or IPortWaveRTPin::AllocateContiguousPagesForMdl. The miniport driver also programs the audio hardware to play from or record into this buffer, but it does not start the DMA transfers until the port driver calls IMiniportWaveRTStream::SetState with State=KSSTATE_RUN. The output parameters from the AllocateAudioBuffer method include the MDL for the audio buffer, the actual size of the driver-allocated buffer, and the offset of the start of the buffer from the start of the first page in the MDL.

The miniport driver sets the CacheType parameter output parameter to one of the MEMORY_CACHING_TYPE enumeration values shown in the following table.

	Value
	Meaning

	MmNonCached
	The requested memory should not be cached by the processor.

	MmCached
	The processor should cache the requested memory.

	MmWriteCombined
	The requested memory should not be cached by the processor, but writes to the memory can be combined by the processor.

For more information about MEMORY_CACHING_TYPE, see the WDK documentation.

RequestedSize is an input parameter that indicates the size that the client is requesting for the audio buffer. ActualSize is an output parameter that indicates the actual size of the audio buffer.

The audio device might require the audio buffer to begin and end on sample boundaries or to meet other types of hardware-dependent alignment constraints. If sufficient memory is available, the buffer’s actual size will be the requested size rounded (up or down) to the nearest sample or other hardware-constrained boundary. Otherwise, the actual size can be less than the requested size.

The AllocateAudioBuffer method is called at IRQL PASSIVE_LEVEL.

See Also

KSPROPERTY_RTAUDIO_BUFFER, IPortWaveRTPin::AllocatePagesForMdl, IPortWaveRTPin::AllocateContiguousPagesForMdl, IMiniportWaveRTStream::SetState

IMiniportWaveRTStream::FreeAudioBuffer
The FreeAudioBuffer method is used to free an audio buffer previously allocated with a call to IMiniportWaveRTStream::AllocateAudioBuffer.

VOID
 FreeAudioBuffer(
 IN PMDL AudioBufferMdl,
 IN ULONG BufferSize
);
Parameters

AudioBufferMdl
Specifies an MDL previously allocated with a call to IMiniportWaveRTStream::AllocateAudioBuffer.

SizeWritten

Output pointer for the number of bytes the method has written to the Attributes buffer. This parameter points to a ULONG variable into which the method writes the byte count.

Return Value

None.
Headers

Declared in portcls.h. Include portcls.h.

Comments

The port driver calls this method to free an audio buffer that was allocated with a previous call to IMiniportWaveRTStream::AllocateAudioBuffer.

The FreeAudioBuffer method is called at IRQL PASSIVE_LEVEL.

See Also

IMiniportWaveRTStream::AllocateAudioBuffer
IMiniportWaveRTStream::GetClockRegister

The GetClockRegister method retrieves the information that the port driver needs to map a hardware wall clock register into virtual memory.

NTSTATUS
 GetClockRegister(
 OUT KSRTAUDIO_HWREGISTER *Register
);

Parameters

Register

Output pointer to a KSRTAUDIO_HWREGISTER structure that describes the register mapping.
Return Value

GetClockRegister returns a status value of STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The port driver calls this method in response to a KSPROPERTY_RTAUDIO_CLOCKREGISTER property request from a client.

A clock register is a counter that increments at the frequency of the internal hardware clock that drives the audio device’s internal bus. The register increments by one with each tick of the clock. The register begins counting when the device powers on, and it continues to run until the device powers off. The clock register is used by software to synchronize two or more devices with independent hardware clocks.

The miniport driver allocates the MDL. The MDL must remain valid until the stream object is deleted. Any subsequent GetClockRegister calls to the same stream object retrieve pointers to the same MDL. The stream object is responsible for freeing the MDL when it is no longer needed.

The GetClockRegister method is called at IRQL PASSIVE_LEVEL.

See Also

KSPROPERTY_RTAUDIO_CLOCKREGISTER, KSRTAUDIO_HWREGISTER
IMiniportWaveRTStream::GetHWLatency

The GetHWLatency method retrieves information about sources of stream latency in the audio hardware.

VOID
 GetHWLatency(
 OUT KSRTAUDIO_HWLATENCY *hwLatency
);

Parameters

hwLatency
A pointer to a KSRTAUDIO_HWLATENCY structure into which the driver writes the hardware latency parameters.

Return Value

None

Headers

Declared in portcls.h. Include portcls.h.

Comments

The port driver calls this method in response to a KSPROPERTY_RTAUDIO_HWLATENCY property request from a client.

The GetHardwareLatency method is called at IRQL PASSIVE_LEVEL.

See Also

KSPROPERTY_RTAUDIO_HWLATENCY, KSRTAUDIO_HWLATENCY
IMiniportWaveRTStream::GetPosition

The GetPosition method retrieves the current play or record position as a byte offset from the beginning of the buffer.

NTSTATUS
 GetPosition(
 OUT PKSAUDIO_POSITION AudioPosition
);
Parameters

AudioPosition

Pointer to a KSAUDIO_POSITION structure. For a rendering stream, the method writes the write position and play position into this structure. For a capture stream, the method writes the read position and record position into the structure. Positions are specified as byte offsets from the beginning of the cyclic buffer. For information about KSAUDIO_POSITION, see the WDK documentation.

Return Value

GetPosition returns STATUS_SUCCESS if the call was successful. Otherwise, the function returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The WaveRT port driver calls this method in response to a KSPROPERTY_AUDIO_POSITION property request from a client. For information about KSPROPERTY_AUDIO_POSITION, see the WDK documentation.

The GetPosition method is called at IRQL PASSIVE_LEVEL or DISPATCH_LEVEL.

IMiniportWaveRTStream::GetPositionRegister

The GetPositionRegister method retrieves the information that the port driver needs to map a hardware position register into virtual memory.

NTSTATUS
 GetPositionRegister(
 OUT KSRTAUDIO_HWREGISTER *Register
);
Parameters

Register
Output pointer to a KSRTAUDIO_HWREGISTER structure that describes the register mapping.

Return Value

GetPositionRegister returns a status value of STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

The port driver calls this method in response to a KSPROPERTY_RTAUDIO_POSITIONREGISTER property request from a client.

The GetPositionRegister method is called at IRQL PASSIVE_LEVEL.

See Also

KSPROPERTY_RTAUDIO_POSITIONREGISTER
IMiniportWaveRTStream::SetFormat

The SetFormat method sets the data format of the wave stream.

NTSTATUS
 SetFormat(
 IN PKSDATAFORMAT DataFormat
);
Parameters

DataFormat

Pointer to a KSDATAFORMAT structure that describes the requested data format. For information about KSDATAFORMAT, see the WDK documentation.

Return Value

SetFormat returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code. The following table shows a possible return status code.

	Status Code
	Meaning

	STATUS_INVALID_PARAMETER
	The specified format is either not valid or not supported by the driver, or the format cannot be changed while the stream is running.

Headers

Declared in portcls.h. Include portcls.h.

Comments

For more information about kernel-streaming wave formats, see the WDK documentation.

The SetFormat method is called at IRQL PASSIVE_LEVEL.

IMiniportWaveRTStream::SetState

The SetState method changes the audio stream’s transport state.

NTSTATUS
 SetState(
 IN KSSTATE State
);
Parameters

State

Specifies the new state of the stream. This parameter is a KSSTATE enumeration value. For more information, see the following Comments section.

Return Value

SetState returns STATUS_SUCCESS if the call was successful. Otherwise, the method returns an appropriate error status code.

Headers

Declared in portcls.h. Include portcls.h.

Comments

For an audio stream, the KSSTATE enumeration values are interpreted as shown in the following table.

	KSSTATE Enumeration Value
	Meaning

	KSSTATE_RUN
	Data transport in the audio stream is running and functioning normally.

	KSSTATE_ACQUIRE
	A transitional state that helps to manage the transition between KSSTATE_RUN and KSSTATE_STOP.

	KSSTATE_PAUSE
	A transitional state that helps to manage the transition between KSSTATE_RUN and KSSTATE_STOP.

	KSSTATE_STOP
	Data transport is stopped in the audio stream.

For most driver implementations, KSSTATE_ACQUIRE and KSSTATE_PAUSE are indistinguishable.

Transitions always occur in one of the following two sequences:

· STOP → ACQUIRE → PAUSE → RUN

· RUN → PAUSE → ACQUIRE → STOP

The IMiniportWaveRT::NewStream method sets the initial state of the stream to KSSTATE_STOP.

The SetState method is called at IRQL PASSIVE_LEVEL.

See Also

IMiniportWaveRT::NewStream
KSPROPSETID_RTAudio Property Set

The KSPROPSETID_RTAudio property set specifies the properties of a WaveRT audio device. These properties are not supported in operating systems earlier than Windows Vista.

In each of the property definitions that follow, the table that summarizes the features of the property indicates that the property is get-only and that the target is a pin:

· All properties in this property set support get-property requests from the client, but not set-property requests.

· For all of the properties in this set, the target to which a client sends a property request is a pin instance. (For example, other KS property sets support properties on filter instances.)

For general information about KS properties, see the WDK documentation.

The KSPROPSETID_RTAudio property set contains the following properties:

KSPROPERTY_RTAUDIO_BUFFER

KSPROPERTY_RTAUDIO_CLOCKREGISTER

KSPROPERTY_RTAUDIO_HWLATENCY

KSPROPERTY_RTAUDIO_POSITIONREGISTER

KSPROPERTY_RTAUDIO_BUFFER

The KSPROPERTY_RTAUDIO_BUFFER property specifies a driver-allocated cyclic buffer for audio data.

The following table summarizes the features of this property.

	Get
	Set
	Target
	Property Descriptor Type
	Property Value Type

	Yes
	No
	Pin
	KSRTAUDIO_BUFFER_PROPERTY
	KSRTAUDIO_BUFFER

The property descriptor (instance data) consists of a KSRTAUDIO_BUFFER_PROPERTY structure that contains a KSPROPERTY structure along with other members. The client writes its requested buffer size into the structure. The client should specify the base address as NULL unless a specific base address is needed. For information about KSPROPERTY, see the WDK documentation.

The property value (operation data) is a structure of type KSRTAUDIO_BUFFER. The driver fills this structure with the actual buffer size, base address, and memory barrier flag for the cyclic buffer that it has allocated.

Return Value

A KSPROPERTY_RTAUDIO_BUFFER property request returns STATUS_SUCCESS to indicate that it has completed successfully. Otherwise, the request returns an appropriate failure status code. The following table shows some of the possible failure status codes.

	Status Code
	Meaning

	STATUS_UNSUCCESSFUL
	A cyclic buffer with the specified combination of buffer attributes cannot be allocated.

	STATUS_INSUFFICIENT_RESOURCES
	Memory for the buffer cannot be allocated.

	STATUS_DEVICE_NOT_READY
	The device is not ready.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

The base address is the virtual memory address at the start of the cyclic buffer. The client can directly access the buffer at this address. The buffer is contiguous in virtual memory. The decision whether to make the buffer contiguous in physical memory is left up to the driver.

The client should set the base address in the property descriptor to NULL. The driver will set the base address in the property value to the virtual address of the allocated audio buffer.

Typically, audio hardware requires the audio buffer to begin and end on sample boundaries or to meet other types of hardware-dependent alignment constraints. If sufficient memory is available, the buffer’s actual size is the requested size rounded (up or down) to the nearest sample or other hardware-constrained boundary. Otherwise, the actual size can be less than the requested size.

If a KSPROPERTY_RTAUDIO_BUFFER property request succeeds, the property value, which is a structure of type KSRTAUDIO_BUFFER, contains the address and size of the driver-allocated buffer.

Closing the pin automatically frees the buffer that was allocated through this property.

See Also

KSRTAUDIO_BUFFER, KSRTAUDIO_BUFFER_PROPERTY
KSPROPERTY_RTAUDIO_CLOCKREGISTER

The KSPROPERTY_RTAUDIO_CLOCKREGISTER property maps the audio device's wall clock register into a virtual memory location that the client can access.

The following table summarizes the features of this property.

	Get
	Set
	Target
	Property Descriptor Type
	Property Value Type

	Yes
	No
	Pin
	KSRTAUDIO_HWREGISTER_PROPERTY
	KSRTAUDIO_HWREGISTER

The property descriptor (instance data) consists of a KSRTAUDIO_HWREGISTER_PROPERTY structure which contains a KSPROPERTY structure. Before sending the request, the client loads the KSRTAUDIO_HWREGISTER_PROPERTY structure with values that indicate the preferred base address for the clock register. For information about KSPROPERTY, see the WDK documentation.

The property value (operation data) is a pointer to an KSRTAUDIO_HWREGISTER structure into which the property handler writes the register address and register-update frequency. This register address is the user-mode or kernel-mode virtual address into which the hardware register is mapped. The client can directly read the register from this address.

Return Value

A KSPROPERTY_RTAUDIO_CLOCKREGISTER property request returns STATUS_SUCCESS to indicate that it has completed successfully. Otherwise, the request returns an appropriate failure status code.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

Some audio devices contain clock registers. A clock register is a wall clock counter that starts running when the hardware powers up and stops when the hardware powers down. Software uses clock registers to synchronize between two or more controller devices by measuring the relative drift between the devices’ hardware clocks.

If successful, the property request maps the clock register to a virtual memory address that is accessible from either user mode or kernel mode, as specified by the client. Thereafter, the client reads from this address to obtain the current value of the clock register.

The property request fails if the audio hardware does not support a clock register that can be mapped to virtual memory.

The mapping of the clock register is destroyed when the pin closes. The client can map the register only once in the lifetime of a pin instance and any subsequent call to map the clock register again for that instance will fail.

Clock register reads are typically faster than KSPROPERTY_CLOCK_TIME requests, which require transitions between user mode and kernel mode for user-mode clients.

See Also

KSRTAUDIO_HWREGISTER_PROPERTY, KSRTAUDIO_HWREGISTER
KSPROPERTY_RTAUDIO_HWLATENCY

The KSPROPERTY_RTAUDIO_HWLATENCY property retrieves a description of the stream latency of the audio hardware and its associated data path.

The following table summarizes the features of this property.

	Get
	Set
	Target
	Property Descriptor Type
	Property Value Type

	Yes
	No
	Pin
	KSPROPERTY
	KSRTAUDIO_HWLATENCY

The property descriptor (instance data) is a KSPROPERTY structure. For information about KSPROPERTY, see the WDK documentation.

The property value (operation data) is a structure of type KSRTAUDIO_HWLATENCY that describes the sources of latency that the hardware introduces into the audio stream.

Return Value

A KSPROPERTY_RTAUDIO_HWLATENCY property request returns STATUS_SUCCESS to indicate that it has completed successfully. Otherwise, the request returns an appropriate failure status code.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

After the WaveRT miniport driver has allocated the cyclic buffer (see KSPROPERTY_RTAUDIO_BUFFER), the client can send a KSPROPERTY_RTAUDIO_HWLATENCY property request to the driver for hardware-latency information.

See Also

KSRTAUDIO_HWLATENCY, KSPROPERTY_RTAUDIO_BUFFER

KSPROPERTY_RTAUDIO_POSITIONREGISTER

The KSPROPERTY_RTAUDIO_POSITIONREGISTER property maps an audio device's position register for a particular stream into a virtual memory location that the client can access.

The following table summarizes the features of this property.

	Get
	Set
	Target
	Property Descriptor Type
	Property Value Type

	Yes
	No
	Pin
	KSRTAUDIO_HWREGISTER_PROPERTY
	KSRTAUDIO_HWREGISTER

The property descriptor (instance data) is a KSRTAUDIO_HWREGISTER_PROPERTY structure, which contains a KSPROPERTY structure. Before sending the request, the client loads the structure with values that indicate the preferred base address for the register. For information about KSPROPERTY, see the WDK documentation.

The property value (operation data) is an KSRTAUDIO_HWREGISTER structure into which the property handler writes the virtual address to which it has mapped the hardware position register. The client can directly read the register from this address. The KSRTAUDIO_HWREGISTER structure also specifies the rate at which the position register increments.

Return Value

A KSPROPERTY_RTAUDIO_POSITIONREGISTER property request returns STATUS_SUCCESS to indicate that it has completed successfully. Otherwise, the request returns an appropriate failure status code.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

Audio applications typically need to monitor an audio stream's current position, which is specified as a byte offset from the beginning of the stream:

· In the case of a rendering stream, the stream’s position is the byte offset of the audio frame that is currently playing through the digital-to-analog converters (DACs).

· In the case of a capture stream, the stream’s position is the byte offset of the audio frame that is currently being recorded through the analog-to-digital converters (ADCs).

Some audio devices contain position registers that increment continually while the stream is running. For an audio device that incorporates all digital and analog functions into a single chip, the position register typically indicates the current stream position directly.

However, for a chip set that divides digital and analog functions into separate bus-controller and codec chips, the position register is typically located in the bus-controller chip and indicates the following:

· In the case of a rendering stream, the position register indicates the byte offset of the last audio frame that the bus controller wrote to the codec.

· In the case of a capture stream, the position register indicates the byte offset of the last audio frame that the bus controller read from the codec.

In both cases, the position register reading does not include the delay through the codec:

· In the case of a rendering stream, audio data encounters a delay from the time that the bus controller writes the data to the codec until the codec plays the data through the DACs.

· In the case of a capture stream, audio data encounters a delay from the time that the codec captures the data from the ADCs until the bus controller reads the data from the codec.

If the client knows the codec delay, it can add this delay to the position register reading to estimate the true stream position (at the DACs or ADCs). For this purpose, the KSPROPERTY_RTAUDIO_HWLATENCY property retrieves, as one of its output parameters, a CodecDelay value that specifies the worst-case delay through the codec.

If successful, a KSPROPERTY_RTAUDIO_POSITIONREGISTER property request maps the position register to a virtual memory address that is accessible to the client from either user mode or kernel mode, as specified by the client. Thereafter, the client reads from this address to obtain the current value of the position register.

The property request fails if the audio hardware does not support a position register that can be mapped to a virtual address. In this case, the client must rely on the KSPROPERTY_AUDIO_POSITION property to obtain the position. For information about KSPROPERTY_AUDIO_POSITION, see the WDK documentation.

The mapping of the position register is destroyed when the pin closes. The client can map the register only once in the lifetime of an opened pin, and any subsequent call to again map the position register for the pin will fail.

Position register reads are typically faster than KSPROPERTY_AUDIO_POSITION requests, which require transitions between user mode and kernel mode for user-mode clients.

See Also

KSRTAUDIO_HWREGISTER, KSRTAUDIO_HWREGISTER_PROPERTY, KSPROPERTY_RTAUDIO_HWLATENCY
Structures

The properties in the KSPROPSETID_RTAudio property set use several structure types for passing property descriptors (instance data) from client to driver and property values (operation data) from driver to client. The following structures are defined for use with these properties:

KSRTAUDIO_BUFFER_PROPERTY
KSRTAUDIO_BUFFER
KSRTAUDIO_HWREGISTER_PROPERTY

 HYPERLINK \l "_KSRTAUDIO_HWREGISTER"

KSRTAUDIO_HWREGISTER

KSRTAUDIO_HWLATENCY
KSRTAUDIO_BUFFER_PROPERTY
The KSRTAUDIO_BUFFER_PROPERTY structure appends a buffer base address and requested buffer size onto a KSPROPERTY structure. This structure is used by the client to request allocation of the audio buffer via KSPROPERTY_RTAUDIO_BUFFER.
typedef struct
{
 KSPROPERTY Property;
 PVOID BaseAddress;
 ULONG RequestedBufferSize;
} KSRTAUDIO_BUFFER_PROPERTY, *PKSRTAUDIO_BUFFER_PROPERTY;
Members

Property
A KSPROPERTY structure that the client initializes appropriately prior to calling KSPROPERTY_RTAUDIO_BUFFER.
BaseAddress
Specifies the desired buffer base address. Unless the client desires a specific base address, this parameter is set to NULL.
RequestedBufferSize
Specifies the desired buffer size in bytes. The driver returns the actual size of the allocated buffer in the KSRTAUDIO_BUFFER structure that it returns.
Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

The KSPROPERTY_RTAUDIO_BUFFER request uses the KSRTAUDIO_BUFFER_PROPERTY structure to describe the cyclic buffer that the client requests. The driver returns a KSRTAUDIO_BUFFER structure to describe the buffer actually allocated.
The value that the client writes into the RequestedBufferSize member is not binding on the driver. However, the driver should choose a buffer size that is as close as possible to the requested size, taking into account the driver's own constraints on buffer size. The driver might allocate a buffer of a different size if the hardware cannot handle the requested size or the system is low on memory. For example, a driver might allocate a buffer no smaller than a memory page, or it might round the buffer size down to the next whole sample block. Also, if the system is running low on memory, the driver might allocate a buffer that is smaller than the requested size.

See Also

KSPROPERTY_RTAUDIO_BUFFER, KSRTAUDIO_BUFFER
KSRTAUDIO_BUFFER

The KSRTAUDIO_BUFFER structure specifies the buffer address, size, and a call memory barrier flag for a cyclic audio data buffer.

typedef struct
{
 PVOID BufferAddress;
 ULONG ActualBufferSize;
 BOOL CallMemoryBarrier;
} KSRTAUDIO_BUFFER, *PKSRTAUDIO_BUFFER;
Members

BufferAddress

Specifies the base address of the cyclic buffer. This is a virtual memory address through which the user-mode client can directly access the buffer. The driver writes the actual base address of the allocated buffer into this member.

ActualBufferSize

Specifies the buffer size, in bytes. The driver sets this member to the actual size of the allocated buffer.

CallMemoryBarrier
Specifies a flag based on cache type of the allocated buffer. The driver sets this flag to TRUE if the cache type is MmWriteCombined, otherwise the flag should be set to FALSE. For information about MEMORY_CACHING_TYPE, see the WDK documentation.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

The KSPROPERTY_RTAUDIO_BUFFER request uses the KSRTAUDIO_BUFFER structure to describe the actual cyclic buffer that the driver allocates. This client fills in a KSRTAUDIO_BUFFER_PROPERTY structure to request the audio buffer and the driver fills in a KSRTAUDIO_BUFFER structure with the results from the buffer allocation.
See Also

KSPROPERTY_RTAUDIO_BUFFER, KSRTAUDIO_BUFFER_PROPERTY

KSRTAUDIO_HWREGISTER_PROPERTY

The KSRTAUDIO_HWREGISTRY_PROPERTY structure appends a register base address onto a KSPROPERTY structure. This structure is used by the client to request the hardware position register via KSPROPERTY_RTAUDIO_POSITIONREGISTER or request the hardware clock register via KSPROPERTY_RTAUDIO_CLOCKREGISTER.

typedef struct
{
 KSPROPERTY Property;
 PVOID BaseAddress;
} KSRTAUDIO_HWREGISTER_PROPERTY, *PKSRTAUDIO_HWREGISTER_PROPERTY;
Members

Property

A KSPROPERTY structure that the client initializes appropriately prior to calling KSPROPERTY_RTAUDIO_POSITIONREGISTER or KSPROPERTY_RTAUDIO_CLOCKREGISTER.

BaseAddress

Specifies the desired buffer base address. Unless the client desires a specific base address, this parameter is set to NULL.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

The client uses the KSRTAUDIO_HWREGISTER_PROPERTY structure to request the hardware position register or the hardware clock register from the driver. The driver returns a KSRTAUDIO_HWREGISTER structure containing information about the requested hardware register.
See Also

KSPROPERTY_RTAUDIO_POSITIONREGISTER, KSPROPERTY_RTAUDIO_CLOCKREGISTER, KSRTAUDIO_HWREGISTER
KSRTAUDIO_HWREGISTER

The KSRTAUDIO_HWREGISTER structure specifies the address and additional information about a hardware register requested by the client. It is filled in by the driver in response to register request via KSPROPERTY_RTAUDIO_POSITIONREGISTER and KSPROPERTY_RTAUDIO_CLOCKREGISTER.
typedef struct
{
 PVOID Register;
 ULONG Width;
 ULONGLONG Numerator;
 ULONGLONG Denominator;
 ULONG Accuracy;
} KSRTAUDIO_HWREGISTER, *PKSRTAUDIO_HWREGISTER;

Members

Register

Pointer to the register. This member specifies the virtual address into which the register is mapped.

Width

Specifies the width, in bits, of the register. The value of this member can be 32 or 64.

Numerator

Specifies the numerator of the frequency at which the clock register increments. See the following Comments section.

Denominator

Specifies the denominator of the frequency at which the clock register increments. See the following Comments section.

Accuracy

Specifies the accuracy of the clock register. See the following Comments section.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

For hardware position register requests via KSPROPERTY_RTAUDIO_POSITIONREGISTER the driver fills in the Register and Width members, since the other members are specific to clock registers. For hardware clock register requests via KSPROPERTY_RTAUDIO_CLOCKREGISTER the driver fills in the entire structure.

A clock register is a counter that increments at the frequency of the internal hardware clock that drives the audio device’s internal bus. The register increments by one with each tick of the clock. The register begins counting when the device powers on and continues to run until the device powers off. The clock register is used by software to synchronize two or more devices with independent hardware clocks.

Members Numerator and Denominator together specify the frequency at which the clock register increments. The frequency is calculated by dividing Numerator by Denominator.

The clock register increments at the frequency of the audio device’s internal clock. This is the frequency that the audio device typically uses to clock events on the device’s internal bus or external codec link. The hardware derives the audio sample frequencies by dividing down the internal clock frequency.

The audio device might derive its internal clock from an on-chip crystal oscillator or an external clock signal. For example, if a device derives a 16.5-MHz internal clock by dividing a 33-MHz external clock by two, then the numerator and denominator can be specified as 33,000,000 and 2, respectively.

The Accuracy parameter specifies the maximum error in a position register reading. For example, the audio frame size for a 2-channel, 16-bit PCM stream is 4 bytes. If the position register increments (by two times the frame size) once every second tick of the sample clock, the accuracy value is 8 bytes. If the position register increments (by four times the frame size) once every fourth tick of the sample clock, the accuracy value is 16 bytes, and so on.
See Also

KSPROPERTY_RTAUDIO_POSITIONREGISTER, KSPROPERTY_RTAUDIO_CLOCKREGISTER, KSRTAUDIO_HWREGISTER_PROPERTY
KSRTAUDIO_HWLATENCY

The KSRTAUDIO_HWLATENCY structure describes the latency that the audio hardware adds to a wave stream during playback or recording.

typedef struct
{
 ULONG FifoSize;
 ULONG ChipsetDelay;
 ULONG CodecDelay;
} KSRTAUDIO_HWLATENCY, *PKSRTAUDIO_HWLATENCY;
Members

FifoSize

Specifies the size, in bytes, of the hardware FIFO.

ChipsetDelay

Specifies the delay through the chip set in 100-nanosecond units.

CodecDelay

Specifies the delay through the codec in 100-nanosecond units.

Headers

Declared in ksmedia.h. Include ksmedia.h.

Comments

The KSPROPERTY_RTAUDIO_HWLATENCY property request uses the KSRTAUDIO_HWLATENCY structure to pass hardware-latency information from the driver to the client.

The FifoSize member specifies the size of the hardware FIFO that the audio device uses to buffer the wave data that is in transit between memory and the digital-to-analog or analog-to-digital converter (DAC or ADC). During playback, the audio device reads data from memory and holds the data in the FIFO until the time arrives to feed the data to the DAC. During recording, the FIFO accumulates data from the ADC before writing it to main memory. The size of the FIFO can vary with the sample rate and transfer mode.

The ChipsetDelay member is the maximum delay that the chip set adds to data packets traveling between the CPU and main memory. Packet-based hardware interfaces such as PCI Express have nonzero delays with guaranteed upper bounds for isochronous transfer modes. However, for legacy PCI, which uses traditional parallel-bus transfers, the delay is specified as 0.

The CodecDelay member is the delay that the codec adds to an audio stream. The time required for a sample to travel between the audio bus and the input or output jack includes delays through the FIFO, DAC or ADC, and any intermediate processing stages. The codec delay can vary with the sample rate and is therefore only a best estimate.

See Also

KSPROPERTY_RTAUDIO_HWLATENCY

References

Call to Action:

· For system manufacturers: Implement UAA-compliant audio devices in your system designs.

· For device manufacturers: Build WaveRT-friendly audio hardware. For more information, see the UAA hardware specification.

· For driver developers: Learn about and plan to build WaveRT miniport drivers.

· For questions about the WaveRT port driver, please send e-mail to uaa@microsoft.com.

Resources:

Universal Audio Architecture (UAA)

For a general discussion of UAA drivers and hardware requirements, see the Universal Audio Architecture white paper at:
http://www.microsoft.com/whdc/device/audio/uaa.mspx
WaveCyclic and WavePci Port Drivers
For a general discussion of WaveCyclic and WavePci drivers, see the
Wave Filters and WDM Audio Drivers white paper at:
http://www.microsoft.com/whdc/device/audio/default.mspx
Microsoft Hardware and Driver Central

(includes Windows Driver Development Kits [DDK], Windows Hardware Compatibility Test [HCT] Kits, and Windows Logo Program requirements)
http://www.microsoft.com/whdc/default.mspx

Windows Vista Version - January 10, 2006
© 2006 Microsoft Corporation. All rights reserved.

_1142774369.vsd
Global Audio�

Engine�

Play�

Position�

FIFO�

DAC�

Position�

Register�

Speaker�

Write�

Position�

A�

B�

Cyclic�

Buffer�

Start of�

Buffer�

End of�

Buffer�

Client�

Write to�

Buffer�

Read from�

Buffer�

Audio Device�

_1142774593.vsd
Global Audio�

Engine�

Read�

Position�

Record�

Position�

A�

B�

Cyclic�

Buffer�

Start of�

Buffer�

Client�

Write to�

Buffer�

Read from�

Buffer�

FIFO�

ADC�

Position�

Register�

Microphone�

Audio Device�

End of�

Buffer�

